The functions se_logis, re_logis, hce_logis, and ae_logis provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the logistic distribution and \(\delta\).
Arguments
mu
The location parameter of the logistic distribution (\(\mu\in\left(-\infty,+\infty\right)\)).
sigma
The strictly positive scale parameter of the logistic distribution (\(\sigma > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the logistic distribution:
$$
f(x)=\frac{e^{-\frac{\left(x-\mu\right)}{\sigma}}}{\sigma\left(1+e^{-\frac{\left(x-\mu\right)}{\sigma}}\right)^{2}},
$$
where \(x\in\left(-\infty,+\infty\right)\), \(\mu\in\left(-\infty,+\infty\right)\) and \(\sigma > 0\).
References
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, Volume 2 (Vol. 289). John Wiley & Sons.